Have a crack at Rust

Tom Ryder
tom@sanctum.geek.nz
https://sanctum.geek.nz/

mailto:tom@sanctum.geek.nz
https://sanctum.geek.nz/

$ whoami

GNU/Linux systems administrator
Former web developer

Free software enjoyer

Not a Real Programmer

Loves: shell script, AWK, Perl
Accepts: JavaScript, PHP, Python
Reads: lots of C, C++ Email: tom@sanctum.geek.nz

- _ : Web: https://[sanctum.geek.nz/
Writes: a little C’ no C++ Fedi: @tejr@mastodon.sdf.org

https://www.fsf.org/
https://en.wikipedia.org/wiki/Real_Programmers_Don't_Use_Pascal
mailto:tom@sanctum.geek.nz
https://sanctum.geek.nz/
https://mastodon.sdf.org/@tejr

Are you at the right talk?—1/4

I'm not a Rust expert.

I'm still getting to grips with It.

My code at work:

- Glue: Make the web server do the thing with the mail server.

- Ephemeral: Delete every PNG file more than 90 days old.
- Reports/alerts: Email me when two lists don’t match.

| do lots of scripting, but not much programming...

“A script is what you give the actors.
A program is what you give the audience.”

—Larry Wall, per 1faql

https://perldoc.perl.org/perlfaq1

Are you at the right talk?—2/4

assume some programming knowledge, but doesn’t
nave to be Rust.

f you know C, C++, C#, or Java, all of this will be a
piece of cake for you.

If you know JavaScript or Python, you’ll get by.

If you know Rust, you probably know it better than me
already.

Are you at the right talk?—3/4

* |f you're new to Rust:

— This talk can be to orient you to see what my own
experiences have been.

— You can get some idea of if you care or not.

— You can ask me and the room questions at the end.

Are you at the right talk?—4/4

* |f you already know Rust:

— This Is what Rust looks like to someone for whom
programming Is a very secondary thing.

- You can get really mad at me. My friends do, too.

— You can argue with me at the end.

Show of hands

Who's used this “Rust” thing before?

What?—1/3

* Rust is a statically and strongly typed general-
purpose compiled programming language.

* Its compiler not only warns, it won’t even compile
code that allows classic classes of error.

* |t enforces ownership of data for memory safety,
using what it calls the borrow checker.

What?—2/3

* Not philosophically pure:
- Higher-order functions
- OOP-like behavior (structs and traits)
- Algebraic data types
- Pattern matching

 No garbage collector: borrow checker tracks data
“lifetimes”, and enforces memory safety that way.

What?—3/3

Started at Mozilla in 2006

Now owned by the Rust Foundation
Replacement for C and C++ programs
Bindings for existing C code

Some Rust code now In Linux, the kernel

— This has been more than a little contentious...

https://rustfoundation.org/

Why?—1/5

* I'm a systems administrator.

* Reliability matters to me enormously.
- A program can be slow.
— But It better not crash.

« Segmentation faults and undefined behavior are
my bane in C—other people’s code.

Why?—2/5

“f date
Mon 20 Oct 2025 04:21 002 NAOT

“% Jusrdlocal/binderitical-server ——please—work
segmentation fault
“¢139>$ +([]

Why?—3/5
* | also want programs to be easy to install and

portable. | don’t want to have to build it.

* If | do have to build it, | want the dependencies
to be manageable.

 Compiled languages where | get just one binary
with a shared library or two are ideal.

Why?—4/5

* While you guys, the real programmers, are
debating lambda functions, algebraic types,
category theory, and trait inheritance...

* | jJust want the webserver not to crash and the
pager to wake me up at 4:00am.

Why?—5/5

* S0, there’s a compiled language that’s:
- as fastas C...
- as low-level as C...
— without C’s historical baggage...
- where C’s classic memory bugs are impossible?

[DESIRETO KNOW MORE INTENSIFIES]

Getting started—rustup—1/2

Windows:
rustup-init.exe

*ILinux, *BSD, macOS:

$ curl --proto '=https' --tlsvl.2 -sSf \
https://sh.rustup.rs | sh

Getting started—rustup—2/2

* rustc, the compiler

e cargo, the package manager and build tool

e clippy, the linter

* rustfmt, the tidier

* The language’s documentation (HTML)

* The Rust Programming Language book (HTML)

The Rust Programming Language

[. .
Free, included with rustup THE RUST
. Assumes programming knowledge PROGRAMMING

. LANGUAGE
e Seems comprehensive S -

« Harder than K&R, easier than SICP

* Merits persistence:

e It's something of a slog up to Chapter
12, where you build a little command-
line application.

WITH CONTRIBUTIONS FROM THE RUST COMMUNITY

https://en.wikipedia.org/wiki/The_C_Programming_Language
https://en.wikipedia.org/wiki/Structure_and_Interpretation_of_Computer_Programs

Hello, world!

main.rs + (~/projects/hello_world) - VIM

Fri maint) 4 | |
["Hello, world!")+

Hello, cargo!

~/projects

“Yprojectz¥ cargo new hello
Creating binary f1pp11ratiuﬂ? ‘hello™ packa
ﬂDtE* gee more Cargo,toml keys and their dH+1ﬂ1t1DﬂE at ht
Yerojectsd tree hello
hellu

|: Carqgao, toml
=T

L

MALE S

._ directori
“Ypro Eu:.t.._.I

Directions

* | won’t demonstrate Rust syntax from first principles.

* | also won'’t guide you through ownership and the
borrow checker, which is a bit painful for a
presentation.

— The book does a good job of that, anyway.
* |Instead, I'll demonstrate a few features that stood out to

me, and that have examples of Rust’s approach to
safety.

Enums—1/6

main.rs + (~/projects/temperature/src) - VIM

enum Temperaturelnit {
Celzius,
Fahrenheit,

L

A

let number: fhd:
let unit: Temperaturellnit:

match unit o]
silelsius =2 o
let fahrenheit: fE4 = (rumber * (3,0/G,00) +

:') |"'|+
|'_.|. r

tFahrenheit => {

“FRd = (humber - 32,00 /4 (9,0/5,0)¢

Enums—2/6

That's not really special so far...just like a case
block In C, or a match block in Python v3.10+.

However, you can associate values with enums,
too, and extract them in the match block.

Very useful!
You might use unions in C for something similar.

Enums—3/6

main.rs + (~/projects/temperature/src) - VIM

enum Temperature {
EElEiUS{FE%}, |
Fahrenheit(fE4),

et temperature: Temperature:

et conwverted = match temperature I
tiCelzius(number) =
ttFahrenheit((number * (3,0.5,00) + 32,00,
1iFabrenheitinumber) =

-

*lelziust (number - 32,00 / (9,05, 00,

Enums—4/6

Enum matching is exhaustive.

If you don’t handle a possible value, the compiler rejects
the code.

This Is a good example of the compliler enforcing safety.

Also a good example of the high-quality error output
rustc provides:

Enums—5/6

main.rs = (~/projects/temperature/src) - VIM

enum Temperature 1
Celsius(fhd),
Fahrenheit(fE4),
kelwin(fE4),

Enums—6/6

~/projects/temperature/src

“/projects/temperature/srcimazter+?)$ rustc main.rs
: nomexhaustive patterns: Temperature:iKelvin{_) not covered
—» main,rs3l0:27
I
10 1 let converted = match temperature i
l
I - -
note: Temperature defined here
—>» main,rz:l:6
!
1 | enum Temperature o

L AR A AN

Kelvin(fE4),
not cmrered
= note: the matched ‘Temperature
help: ensure that all po e cases are being handled by adding a match arm with a wildcard

Temperatur r-': 1Ce wmber
Temperature: tKely

T aborting due to 1 previous error

Fl]‘ mOrE information about thlS error, try rustc —explain EQO04",
temperature, ster+7)<1>$

Structs

main.rs + (~/rust/minigrep/src) - VIM

struct Config 4
pub query: String,
pub tile_path: String,
pub ighore_case: bool,

Implementations—1/2

* You don’t declare methods for structs in the body.

* Instead you write a separate implementation
block (1mp L), implementing the methods to run on
It.

* Not quite OOP—-certainly not purist—but it does
the important things.

Implementations—2/2

presentation.rs + (~/projects) - VIM

title: String.
author: String,

impl Presentation 1 _ _
tn summarizeltselt) —» String 4 _
'irs by 1F", =elf,title, =self,author)

Traits—1/2

You can specify a set of methods as traits for a struct to
support.

You can then use the traits in the type system.

Instead of asserting “is a Presentation”, you can
assert “implements Summary”.

Duck typing: Typing based on what something does,
rather than what it /s.

Traits—2/2

presentation.rs + (~/projects) - VIM

trait Summary o
fr summarizelss # String:

impl Summary for Presentation o _
fri summar 1._|-'|- zelf) -» String 1

("4F, by 13", =self,title,

zelf, author)

Error handling—1/5

* There are no exceptions in Rust.

* To start with error handling, you can just call the
panic! () macro, which simply exits the

program immediately.
 Think of it like a die().

Error handling—2/5

panic.rs (~/projects) - VIM

fn divizsion{dividend: i32, divisor: i32) -» i32 {
if divizor == 0 1
("divizion by zero"):
T else 1

dividend / divizor

Error handling—3/5

More comprehensive and a very common pattern
IS to use the Resu Lt<T, E> generic type.

If what you did worked, return the value in type T.

If there was an error, return an error in the type E.

The compiler enforces handling all cases.

Error handling—4/5

handle.rs + (~/frust) - VIM

pub fn div(x: f64, y: fB4) -> Result<fB4, String> A
if y==10,0-

Err(String: tFromi"division by zero"))
I elze |

Okix Ayl

Error handling—5/5

Some of the function names chosen here aren’t great.

To specify that you want to panic on an error result, you
use .expect(message). Wat?

To specify that you want to pass the result through a
method chain, but panic on an error result, you
use .unwrap(). Wat?

Can anyone think of better names?

Collections—1/3
* Arrays are of fixed length, like in C. They must
have the same type.

* Vectors have a dynamic length list of data, also
all of the same type.

Collections—2/3

* Tuples can collect different types In the same
order, in fixed length.

« HashMaps uniguely index a list of data of one
type with data of another (“dictionaries”,
“associative arrays”).

Collections—3/3

Borrow checking and ownership are particularly curly
with collections.

If you pass non-Copy pieces of the collection around,
the borrow checker will scold you.

You will be tempted to c Lone () everything...

The saving grace is the compiler is very helpful in
suggesting fixes.

Libraries

* |'ve had no problems finding crates (packages)
with libraries for what | need.

» Crates for typical tasks at work might be:
- MariaDB, MySQL, PostgreSQL: sqglx
- systemd interfacing: systemd
- JSON/XML parsing: json, xml-rs

https://docs.rs/sqlx/latest/sqlx/
https://docs.rs/systemd/latest/systemd/
https://docs.rs/json/latest/json/
https://docs.rs/crate/xml-rs/latest

Tooling—Compiler

In rustc, the compiler’s warning and error output Is
really, really good.

It's easily the most helpful I've seen in any programming
language.

Writing Rust with its strictures can be slow, but trusting in
the compiler for a quick development cycle really helps.

| feel confident in coding fast, and waiting for the
compiler to correct me.

Tooling—Linter—1/2

Run cargo clippy for “lint” output.

Stuff that isn’t errors or even warnings
- The compiler gives you plenty of those, anyway.

Things like unneeded keywords, or suggesting syntactic
sugar.

| like static analysis and linters, so | like getting a good
one in the rustup box.

Tooling—Linter—2/2

~frust/rbdh

“fruzt/rbdh$ cargo clippy
warning: redundant field names in struct initialization
—2» srodmain,reilbr2d

16 Self {matcher: reg. printstr: printstr} . .
help: replace it with: printstr

help: for further information viszit httpziddrust-lang,github, iofrust-clippys/maztersindex, html#redundant_field_names
note: “#[warniclippy::redundant_field_names)] on by default

+

warning: uneeded retun’ statement
—» arocemain,rei?g4:9
return false:
for further information wizit httpzidAruzt-lang,github, iof/rust—clippysmazterd index, html#needless_return

“#lwarniclippyt tneedless_return)]” on by default
remove return

Tooling—Formatter

Just use rustfmt, included with rustup.

| like code being formatted consistently, but | don't go
much In for holy wars.

- Tabs vs spaces, method on this line vs the next one,
maximum line length...

| haven't been angry with anything rustfmt has done.
| use it in Vim and have had no problems.

Adoption—1/4

My favourite example of the strains of Rust adoption into existing
codebases has been from the Python cryptography module.

Since cryptography v35.0, Rust has been needed to build from
source.

People were very upset about this, as it added Rust as a non-trivial
dependency, complicating packaging and build workflow.

The maintainer did not budge.

https://github.com/pyca/cryptography/issues/5771

Adoption—2/4

tiran on Feb 8, 2021

It is also impossible to build on ANY alpine linux version/archites
Update to most recent Alpine with Rust == 1.45. Alpine latest has rust (1.47.0-r2).
Please remove this dependency as soon as possible
Not going to happen. Rust dependency will stay to replace C code with an actual safe language.

You can disable Rust integration in 3.4.x (see FAQ). Starting with 3.5 cryptography will have mandatory Rust code.

& 118 37 @5 W41

https://github.com/pyca/cryptography/issues/5771#issuecomment-775016788

https://github.com/pyca/cryptography/issues/5771#issuecomment-775016788

Adoption—3/4

Adoption into the Linux kernel has been similarly fraught.

From observations on the kernel mailing list, | would say
the number-one thing Rust advocates lack is patience.

Tempers flared whenever progress getting Rust into the
kernel stalled.

Rust isn’t going to save our souls, and using C is not a
cardinal sin.

Adoption—4/4

On Wed, Jan 08, 2025 at 04:16:18PM +0100, Miguel Ojeda wrote:
> 0n Wed, Jan 8, 2025 at 3:00 PM Christoph Hellwig <hch@lst.de> wrote:

> > No rust code in kernel/dma,

> What do you suggest?

Keep the wrappers in your code instead of making life painful for
others.

https://lwn.net/ml/all/20250108151858.GB24499@Ist.de/

https://lwn.net/ml/all/20250108151858.GB24499@lst.de/

Tooling—IDE

| don’t use an IDE. I'm a shell-and-Vim guy.
I've had no problems using Vim with Rust.
Vim’s built-in support works great.

There are LSP options for comprehensive support, but |
don’t really like that.

The compiler and linter work fine called straight from
Vim.

Overall—1/6—Advantages

* Very rewarding to know.

e \Very instructive about problem patterns in other
programming languages.
- Even when you’re not using It.
* Very practical feature choices.
- Reminds me of Perl: give me all the useful stuff.
- Screw design purity!

Overall—2/6—Advantages

* Really good warning and error messages.

- The best of any language I've used.

- This alone is a reason to try Rust, even if you don’t end up
using it much.

« Great to have Unicode built-in to strings.

 Wonderful to have a whole class of errors completely
disappear. Can be a good tradeofft.

Overall—3/6—Drawbacks

Hardest language I've ever tried to learn.

Unintuitive, needlessly strange design and syntax.
- Unmatched single guotes for lifetimes...?

Some awful choices of function names in the stdlib.

Dealing with strings even more confusing than in C.
- The book tries to explain this away, but it’s not very convincing.
- At least it’'s more explicit about the curliness than C.

Overall—4/6—Drawbacks

« Still a heavy dependency to install on many machines,
If building Is required.

- If I can build a binary for the target architecture, though, no
problems.

 Overzealous and sometimes downright sanctimonious
community.

- Alittle too much non-software politics for my liking, too.
« Anti-copyleft culture.

Overall—5/6—Conclusions

| didn’t like it at first, but | have come around.

Its largely replacing C++ seems inevitable, but it
will take a long time.

| think It'll replace some C, too, but not as much.

It will be useful. If new code needs C or C++ from
now on, | will probably write it In Rust.

Overall—6/6—Conclusions

« Butl don't think I'll be using it in day-to-day-scripting.
- Too slow to write.
- Too strict.
- Not already-installed on any given machine.
- Efficiency at runtime a bad trade-off for quick jobs.

 I'll just keep using Perl, PHP, Python, and shell for those.
e S0... what next?

You swap places with Slinky,

BTeir the Footp:] St:16 Dx:18 Co:l% In:id Wil Ch:8 Chaotic
Dlwlzdl #:0 HP:11011) Puz2i2) AC:7? X¥p:l

Plug for PLUG

* | present regularly at the
Palmerston North Linux
Users Group:

https://www.plug.org.nz/ #EQP“I:U"G

Palmerston North
Linux Users Group

* We meet once a month,
every second Wednesday.

* Everyone welcome!

https://www.plug.org.nz/

Questions? Arguments?

 Rust Foundation
* Rustlings

Email: tom@sanctum.geek.nz
Website: https://sanctum.geek.nz/
Fediverse: @tejr@mastodon.sdf.org

Thanks to: Gareth Pulham, Daniel Foster, Robbie McKennie

https://rustfoundation.org/
https://rustlings.rust-lang.org/
mailto:tom@sanctum.geek.nz
https://sanctum.geek.nz/
https://mastodon.sdf.org/@tejr

