

Have a crack at Rust

Tom Ryder
tom@sanctum.geek.nz

https://sanctum.geek.nz/

mailto:tom@sanctum.geek.nz
https://sanctum.geek.nz/

$ whoami
● GNU/Linux systems administrator
● Former web developer
● Free software enjoyer
● Not a Real Programmer
● Loves: shell script, AWK, Perl
● Accepts: JavaScript, PHP, Python
● Reads: lots of C, C++
● Writes: a little C, no C++

Email: tom@sanctum.geek.nz
Web: https://sanctum.geek.nz/
Fedi: @tejr@mastodon.sdf.org

https://www.fsf.org/
https://en.wikipedia.org/wiki/Real_Programmers_Don't_Use_Pascal
mailto:tom@sanctum.geek.nz
https://sanctum.geek.nz/
https://mastodon.sdf.org/@tejr

Are you at the right talk?—1/4
● I'm not a Rust expert.
● I'm still getting to grips with it.
● My code at work:

– Glue: Make the web server do the thing with the mail server.
– Ephemeral: Delete every PNG file more than 90 days old.
– Reports/alerts: Email me when two lists don’t match.

● I do lots of scripting, but not much programming…

“A script is what you give the actors.
A program is what you give the audience.”

—Larry Wall, perlfaq1

https://perldoc.perl.org/perlfaq1

Are you at the right talk?—2/4
● I assume some programming knowledge, but doesn’t

have to be Rust.

● If you know C, C++, C#, or Java, all of this will be a
piece of cake for you.

● If you know JavaScript or Python, you’ll get by.

● If you know Rust, you probably know it better than me
already.

Are you at the right talk?—3/4
● If you’re new to Rust:

– This talk can be to orient you to see what my own
experiences have been.

– You can get some idea of if you care or not.

– You can ask me and the room questions at the end.

Are you at the right talk?—4/4
● If you already know Rust:

– This is what Rust looks like to someone for whom
programming is a very secondary thing.

– You can get really mad at me. My friends do, too.

– You can argue with me at the end.

Show of hands

Who's used this “Rust” thing before?

What?—1/3
● Rust is a statically and strongly typed general-

purpose compiled programming language.
● Its compiler not only warns, it won’t even compile

code that allows classic classes of error.
● It enforces ownership of data for memory safety,

using what it calls the borrow checker.

What?—2/3
● Not philosophically pure:

– Higher-order functions

– OOP-like behavior (structs and traits)

– Algebraic data types

– Pattern matching

● No garbage collector: borrow checker tracks data
“lifetimes”, and enforces memory safety that way.

What?—3/3
● Started at Mozilla in 2006

● Now owned by the Rust Foundation

● Replacement for C and C++ programs

● Bindings for existing C code

● Some Rust code now in Linux, the kernel
– This has been more than a little contentious…

https://rustfoundation.org/

Why?—1/5
● I'm a systems administrator.
● Reliability matters to me enormously.

– A program can be slow.

– But it better not crash.

● Segmentation faults and undefined behavior are
my bane in C—other people’s code.

Why?—2/5

Why?—3/5
● I also want programs to be easy to install and

portable. I don’t want to have to build it.
● If I do have to build it, I want the dependencies

to be manageable.
● Compiled languages where I get just one binary

with a shared library or two are ideal.

Why?—4/5
● While you guys, the real programmers, are

debating lambda functions, algebraic types,
category theory, and trait inheritance…

● I just want the webserver not to crash and the
pager to wake me up at 4:00am.

Why?—5/5

● So, there’s a compiled language that’s:
– as fast as C…

– as low-level as C…

– without C’s historical baggage…

– where C’s classic memory bugs are impossible?

Getting started—rustup—1/2

$ curl --proto '=https' --tlsv1.2 -sSf \
 https://sh.rustup.rs | sh

Windows:

*/Linux, *BSD, macOS:

rustup-init.exe

Getting started—rustup—2/2
● rustc, the compiler
● cargo, the package manager and build tool
● clippy, the linter
● rustfmt, the tidier
● The language’s documentation (HTML)
● The Rust Programming Language book (HTML)

The Rust Programming Language
● Free, included with rustup
● Assumes programming knowledge
● Seems comprehensive
● Harder than K&R, easier than SICP
● Merits persistence:

● It’s something of a slog up to Chapter
12, where you build a little command-
line application.

https://en.wikipedia.org/wiki/The_C_Programming_Language
https://en.wikipedia.org/wiki/Structure_and_Interpretation_of_Computer_Programs

Hello, world!

Hello, cargo!

Directions
● I won’t demonstrate Rust syntax from first principles.
● I also won’t guide you through ownership and the

borrow checker, which is a bit painful for a
presentation.
– The book does a good job of that, anyway.

● Instead, I’ll demonstrate a few features that stood out to
me, and that have examples of Rust’s approach to
safety.

Enums—1/6

Enums—2/6
● That’s not really special so far…just like a case

block in C, or a match block in Python v3.10+.

● However, you can associate values with enums,
too, and extract them in the match block.

● Very useful!
● You might use unions in C for something similar.

Enums—3/6

Enums—4/6
● Enum matching is exhaustive.

● If you don’t handle a possible value, the compiler rejects
the code.

● This is a good example of the compiler enforcing safety.

● Also a good example of the high-quality error output
rustc provides:

Enums—5/6

Enums—6/6

Structs

Implementations—1/2
● You don’t declare methods for structs in the body.
● Instead you write a separate implementation

block (impl), implementing the methods to run on
it.

● Not quite OOP—certainly not purist—but it does
the important things.

Implementations—2/2

Traits—1/2
● You can specify a set of methods as traits for a struct to

support.
● You can then use the traits in the type system.
● Instead of asserting “is a Presentation”, you can

assert “implements Summary”.
● Duck typing: Typing based on what something does,

rather than what it is.

Traits—2/2

Error handling—1/5
● There are no exceptions in Rust.

● To start with error handling, you can just call the
panic!() macro, which simply exits the
program immediately.

● Think of it like a die().

Error handling—2/5

Error handling—3/5
● More comprehensive and a very common pattern

is to use the Result<T,E> generic type.

● If what you did worked, return the value in type T.

● If there was an error, return an error in the type E.

● The compiler enforces handling all cases.

Error handling—4/5

Error handling—5/5
● Some of the function names chosen here aren’t great.
● To specify that you want to panic on an error result, you

use .expect(message). Wat?
● To specify that you want to pass the result through a

method chain, but panic on an error result, you
use .unwrap(). Wat?

● Can anyone think of better names?

Collections—1/3
● Arrays are of fixed length, like in C. They must

have the same type.

● Vectors have a dynamic length list of data, also
all of the same type.

Collections—2/3
● Tuples can collect different types in the same

order, in fixed length.

● HashMaps uniquely index a list of data of one
type with data of another (“dictionaries”,
“associative arrays”).

Collections—3/3
● Borrow checking and ownership are particularly curly

with collections.
● If you pass non-Copy pieces of the collection around,

the borrow checker will scold you.
● You will be tempted to clone() everything…
● The saving grace is the compiler is very helpful in

suggesting fixes.

Libraries
● I’ve had no problems finding crates (packages)

with libraries for what I need.
● Crates for typical tasks at work might be:

– MariaDB, MySQL, PostgreSQL: sqlx

– systemd interfacing: systemd

– JSON/XML parsing: json, xml-rs

https://docs.rs/sqlx/latest/sqlx/
https://docs.rs/systemd/latest/systemd/
https://docs.rs/json/latest/json/
https://docs.rs/crate/xml-rs/latest

Tooling—Compiler
● In rustc, the compiler’s warning and error output is

really, really good.
● It’s easily the most helpful I’ve seen in any programming

language.
● Writing Rust with its strictures can be slow, but trusting in

the compiler for a quick development cycle really helps.
● I feel confident in coding fast, and waiting for the

compiler to correct me.

Tooling—Linter—1/2
● Run cargo clippy for “lint” output.
● Stuff that isn’t errors or even warnings

– The compiler gives you plenty of those, anyway.
● Things like unneeded keywords, or suggesting syntactic

sugar.
● I like static analysis and linters, so I like getting a good

one in the rustup box.

Tooling—Linter—2/2

Tooling—Formatter
● Just use rustfmt, included with rustup.
● I like code being formatted consistently, but I don't go

much in for holy wars.
– Tabs vs spaces, method on this line vs the next one,

maximum line length…

● I haven't been angry with anything rustfmt has done.
● I use it in Vim and have had no problems.

Adoption—1/4
● My favourite example of the strains of Rust adoption into existing

codebases has been from the Python cryptography module.

● Since cryptography v35.0, Rust has been needed to build from
source.

● People were very upset about this, as it added Rust as a non-trivial
dependency, complicating packaging and build workflow.

● The maintainer did not budge.

https://github.com/pyca/cryptography/issues/5771

https://github.com/pyca/cryptography/issues/5771#issuecomment-775016788

Adoption—2/4

https://github.com/pyca/cryptography/issues/5771#issuecomment-775016788

Adoption—3/4
● Adoption into the Linux kernel has been similarly fraught.

● From observations on the kernel mailing list, I would say
the number-one thing Rust advocates lack is patience.

● Tempers flared whenever progress getting Rust into the
kernel stalled.

● Rust isn’t going to save our souls, and using C is not a
cardinal sin.

https://lwn.net/ml/all/20250108151858.GB24499@lst.de/

Adoption—4/4

https://lwn.net/ml/all/20250108151858.GB24499@lst.de/

Tooling—IDE
● I don’t use an IDE. I’m a shell-and-Vim guy.
● I’ve had no problems using Vim with Rust.
● Vim’s built-in support works great.
● There are LSP options for comprehensive support, but I

don’t really like that.
● The compiler and linter work fine called straight from

Vim.

Overall—1/6—Advantages
● Very rewarding to know.
● Very instructive about problem patterns in other

programming languages.
– Even when you’re not using it.

● Very practical feature choices.
– Reminds me of Perl: give me all the useful stuff.
– Screw design purity!

Overall—2/6—Advantages
● Really good warning and error messages.

– The best of any language I’ve used.

– This alone is a reason to try Rust, even if you don’t end up
using it much.

● Great to have Unicode built-in to strings.

● Wonderful to have a whole class of errors completely
disappear. Can be a good tradeoff.

Overall—3/6—Drawbacks
● Hardest language I’ve ever tried to learn.
● Unintuitive, needlessly strange design and syntax.

– Unmatched single quotes for lifetimes…?

● Some awful choices of function names in the stdlib.
● Dealing with strings even more confusing than in C.

– The book tries to explain this away, but it’s not very convincing.
– At least it’s more explicit about the curliness than C.

Overall—4/6—Drawbacks
● Still a heavy dependency to install on many machines,

if building is required.
– If I can build a binary for the target architecture, though, no

problems.
● Overzealous and sometimes downright sanctimonious

community.
– A little too much non-software politics for my liking, too.

● Anti-copyleft culture.

Overall—5/6—Conclusions
● I didn’t like it at first, but I have come around.
● Its largely replacing C++ seems inevitable, but it

will take a long time.
● I think it’ll replace some C, too, but not as much.
● It will be useful. If new code needs C or C++ from

now on, I will probably write it in Rust.

Overall—6/6—Conclusions
● But I don’t think I’ll be using it in day-to-day-scripting.

– Too slow to write.
– Too strict.
– Not already-installed on any given machine.
– Efficiency at runtime a bad trade-off for quick jobs.

● I’ll just keep using Perl, PHP, Python, and shell for those.
● So… what next?

Plug for PLUG
● I present regularly at the

Palmerston North Linux
Users Group:
https://www.plug.org.nz/

● We meet once a month,
every second Wednesday.

● Everyone welcome!

https://www.plug.org.nz/

Questions? Arguments?
● Rust Foundation
● Rustlings

Email: tom@sanctum.geek.nz
Website: https://sanctum.geek.nz/
Fediverse: @tejr@mastodon.sdf.org

Thanks to: Gareth Pulham, Daniel Foster, Robbie McKennie

https://rustfoundation.org/
https://rustlings.rust-lang.org/
mailto:tom@sanctum.geek.nz
https://sanctum.geek.nz/
https://mastodon.sdf.org/@tejr

