

Incremental Backups with Dirvish

Tom Ryder
tom@sanctum.geek.nz

https://sanctum.geek.nz/

mailto:tom@sanctum.geek.nz
https://sanctum.geek.nz/

People and organisations learning how backups
work go through distinct stages...

Stage 0: nO bAcKuPs

● Accidents happen
● Newbies toast filesystems
● Drives fail
● Laptops get stolen
● Servers get hacked

Stage 1: Manual local backups

● Each night (when you remember), you copy all
your stuff from one drive onto another:

$ cp -r /home/me /mnt/backup

● 100 times better than nothing, but...
● Boring
● Error-prone

Stage 2: Automated local backups

● You recruit cron(8) to run that command for you:

$ grep backup /etc/crontab

0 0 * * * root cp -r /home/me /mnt/backup

● systemd timers work too; pick your poison
● Much more fire-and-forget
● Send the errors somewhere useful!

Stage 3: Differential remote backups

● Network destination, preferably a different
building

● Copying gigabytes of data every night is slow
(and maybe expensive)

● A lot of the data will be the same as last time
● Use rsync to copy only the changed parts

0 0 * * * root rsync -a /home/me srv::bak

Stage 4: Incremental backups

● You need a file as it was three days ago, and not last
night

● You only have last night’s backup; the prior state is gone
forever!

● Keep backups for every day of the week:

0 0 * * 1 root rsync -a /home/me srv::bak/mon

0 0 * * 2 root rsync -a /home/me srv::bak/tue

0 0 * * 3 root rsync -a /home/me srv::bak/wed
...

Stage 5: Deduplicated backups

● Backups are important, but disk space is finite
● Incremental backups fill up space fast
● Lots of redundancy for files that don’t change
● Store only the changed files
● Git does it this way, too

● But how do you get the data out?
● How are backups represented?

School of hard links

● Filesystems like ext4 support hard links:
$ ln name1 name2

Note: no -s flag this time: not a symbolic link
– Some similarities, though

● Two filesystem names point to the same data, specifically, the same
inode

● Neither an “original” nor a “copy”
● rsync understands them (-H option)

So, since your kernel image doesn’t change day-to-day, why not store
just one copy, and hard link all references to it?

Enter Dirvish

● Wrapper for rsync(1)’s options

● Stores backup sets in vaults
● Uses hard links for deduplication
● Backup is complete at filesystem level

– Easy to explore (cd, ls, find...)

– Easy to restore (cp, mv, rsync...)

– Sparing on space

Dirvish vault structure 1/3

$ ls /bak/pc
20190708 20190709 dirvish

Dirvish vault structure 2/3

$ ls /bak/pc
20190708 20190709 dirvish

$ cat /bak/pc/dirvish/default.conf
tree: /

Dirvish vault structure 3/3

$ ls /bak/pc
20190708 20190709 dirvish

$ cat /bak/pc/dirvish/default.conf
tree: /

$ ls -i /bak/pc/20190708/tree/etc/hostname
10486452 /bak/pc/20190708/tree/etc/hostname

$ ls -i /bak/pc/20190709/tree/etc/hostname
10486452 /bak/pc/20190709/tree/etc/hostname

Dirvish config 1/4

$ cat /etc/dirvish.conf
bank:
 /bak

Dirvish config 2/4

$ cat /etc/dirvish.conf
bank:
 /bak
exclude:
 - /dev/
 - /proc/
 - /sys/

Dirvish config 3/4

$ cat /etc/dirvish.conf
bank:
 /bak
exclude:
 - /dev/
 - /proc/
 - /sys/
expire-default: +7 days

Dirvish config 4/4

$ cat /etc/dirvish.conf
bank:
 /bak
exclude:
 - /dev/
 - /proc/
 - /sys/
expire-default: +7 days
Runall:
 pc 5:30

Dirvish backup schedules 1/2

“I want to take backups every day. I want those
backups to get deleted after they’re a week old,
except the ones taken each Friday, which I want
to keep for a month, and the ones taken on the
first of the month, which I want to keep for a
year. Can I automate that without writing
code?”

Dirvish backup schedules 2/2

expire-default: +7 days

expire-rule:

 * * * * fri +1 months

 * * 1 * * +12 months

Bonus stage: Encrypted 1/2

● Ideally, encrypt at the block level
– LUKS or dm-crypt

– BitLocker

● Send over a trusted network or an
authenticated, encrypted tunnel, to your
machine in a secure location

● Transparency is a big win
● It’s just easier

Bonus stage: Encrypted 2/2

● If the backup server is managed by $EVILCORP,
you might need something like Duplicity

● Goal: The remote server never sees your plaintext
data

● Uses your GnuPG key pair
● Still incremental!
● Still deduplicated!
● Still verifiable!

The Tao of Backup: 1/7

● Coverage: Don’t exclude files without a really
good reason.
– “Not enough disk space” is a bad reason—get

bigger disks!

– “Not important” isn’t great, either—why do you have
it in the first place?

– Your time is always worth more than
disk space, or the dollars to get it

The Tao of Backup: 2/7

● Frequency: Back stuff up with a frequency that
reflects your work on that stuff.
– Daily tends to be a happy medium.

– Best to include weekends as well!

The Tao of Backup: 3/7

● Separation: Keep backups in different physical
locations.
– The more important the data, the more copies there

should be, and the further apart they should be.

– A good method for most technical people’s personal
files is to back up to a local device and then
(encrypted!) to cloud storage.

The Tao of Backup: 4/7

● History: Keep old backups as long as practical
– This is the raison d’être for incremental backups

– Disk space is a concern here

– Deduplication can help a lot, depending on the data

– Decide on a retention schedule. Dirvish is good at
this, but other systems can do it too.

– Don’t do this manually

The Tao of Backup: 5/7

● Testing: Restore the backup and reinstate the
data in place
– Does it work?

– How long does it take?

– Is the data the same?
● Validity checks at backup time are helpful, but it’s not the

same thing

– Time-intensive, and a tough sell to management...

The Tao of Backup: 6/7

● Security: Worth backing up, likely sensitive!
– Where is it? (Physically!) “There is no cloud...”

– How can it be retrieved?

– Who can retrieve it?

– Which systems see it in plaintext? When?

The Tao of Backup: 7/7

● Integrity: Does the backup contain the data
intended, bit-for-bit?
– Verifying integrity at backup time

– Verifying integrity at restore time

– Plain old checksums are a good start

– Checksum-based systems like Git can help, too

Tom’s addendum to the Tao

Monitoring!
● Send errors somewhere that someone will

actually read them so that they get fixed
● Notify when the job doesn’t run correctly
● Notify when the job hasn’t run at all

– Quis custodiet ipsos custodes?

● Use system mail, Dirvish hooks, and Nagios

Questions?

● Dirvish: http://dirvish.org/
● Duplicity: http://duplicity.nongnu.org/
● Tao of Backup: http://www.taobackup.com/

Email: tom@sanctum.geek.nz
Website: https://sanctum.geek.nz/
Twitter: @tejrnz

http://dirvish.org/
http://duplicity.nongnu.org/
http://www.taobackup.com/
mailto:tom@sanctum.geek.nz
https://sanctum.geek.nz/
https://twitter.com/tejrnz

