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What is SSH?
● Short for Secure SHell
● Run commands on other computers:

– With encryption
– With authentication

● Successor to unencrypted tools like rlogin
– Designed as mostly-drop-in replacement



  

What is OpenSSH?
● OpenBSD’s implementation of both client and 

server of the SSH protocol
● Free software (BSD license); also the default on 

GNU/Linux
● Very popular, but not the only SSH 

implementation



  

Typical SSH usage 1/2
● Run a user’s default shell on remote host with same 

username:
local$ ssh remote

● Doesn’t have to be a shell; other commands work too:
local$ ssh -t remote top

● For interactive use, a shell is the most convenient 
program.



  

Typical SSH usage 2/2
● Connect to a remote server with a different 

username:
local$ ssh -l friend remote

● Connect to a remote server running on a 
different port
    local$ ssh -p 2222 remote 



  

Installing the OpenSSH server
● dpkg (Debian):

remote$ sudo apt install openssh-server
● rpm (Red Hat):

remote$ sudo yum install openssh-server

Generally works out of the box; some security 
considerations with the defaults



  

Passwords are a pain
● Prompted for passwords on every connection:

local$ ssh remote
Password:

● This gets tiresome to type out every time.
● There are also some security issues with it...

– Especially if you turn StrictHostKeyChecking off, or ignore 
the host key warnings...

(plz dont)



  

Public/private keys
● Generate an SSH key:

local$ ssh-keygen
– Lots of options, but the defaults are OK
– Decent strength RSA key (>= 2048 bits)
– Named user@local
– We are prompted for a passphrase...



  

Passphrase vs password
● The passphrase is used to encrypt the key, not 

to authenticate to the remote server.
● The remote server doesn’t see the passphrase.

– This is already somewhat safer.



  

SSH agent 1/2
● Run an SSH agent for managing the key:

local$ eval "$(ssh-agent)"
Agent pid 2518

● Add your key:
local$ ssh-add
Enter passphrase for /home/ssh-demo/.ssh/id_rsa:
Identity added: /home/ssh-demo/.ssh/id_rsa 

(/home/ssh-demo/.ssh/id_rsa)
● Check it’s ready:

local$ ssh-add -l
2048 SHA256:3v1Rf6ua3eTnjKQWbaSTWJJkXyK7dRgxAAVySGXuQKM 

/home/ssh-demo/.ssh/id_rsa (RSA)



  

SSH agent 2/2
● Good to put into your ~/.profile or 
~/.bash_profile

eval "$(ssh-agent)"

● Also check out Keychain: 
https://www.funtoo.org/Keychain

https://www.funtoo.org/Keychain


  

Copy the key 1/2
● Easy way:

local$ ssh-copy-id remote
● Provide the password (for the last time!)
● Connections after that point will use the key from the 

agent, without needing a password:
local$ ssh remote
remote$



  

Copy the key 2/2
● Under the hood, all ssh-copy-id does is:

1. Retrieve the public key loaded by ssh-agent

2. Add it to the end of remote:.ssh/authorized_keys
● That’s all!
● You can do this manually, but it’s a bit inconvenient 

and error-prone (especially for long keys)



  

Go key-only
● Now we can turn off password authentication in
remote:/etc/ssh/sshd_config:
PasswordAuthentication no

● Now only keys will be accepted (careful!)
● You don’t have to worry about being brute-forced anymore
● Well, except for robots filling up your logs...

Hint: apt install fail2ban



  

Client config files 1/3
● Remembering or typing out connection details can be a pain:

local$ ssh remote1

local$ ssh -l friend remote2

local$ ssh -p 2222 remote3

local$ ssh remote4.ssh-servers.annoyingly-long-
domain-name.net.nz 



  

Client config files 2/3
● Put the details in ~/.ssh/config instead:
Host remote1
Host remote2
User friend

Host remote3
  Port 2222 
Host remote4
  HostName remote4.ssh-servers.annoyingly-long-
domain-name.net.nz



  

Client config files 3/3
● Ahh, much better!

local$ ssh remote1
local$ ssh remote2
local$ ssh remote3
local$ ssh remote4

● Way better than copy-pasting commands or searching 
history...



  

Port forwarding 1/3
● Forward TCP traffic on a local port to a remote 

port accessible to the SSH server.
...that is to say...

● Make a port on your computer act like a port on 
the other end; masquerade as the remote host.



  

Port forwarding 2/3
● My MariaDB server only listens locally.
● I can’t just connect to it straight from the 

internet (good!)
● But I want to connect to it from a GUI program 

on my trusted computer...



  

Port forwarding 3/3
local$ ssh -L 3306:localhost:3306 remote
remote$

Then, in another terminal:

local$ mariadb
MariaDB>



  

SOCKS5 proxy 1/4
● Tom’s favourite trick!
● Pass all traffic for an application through the 

SSH tunnel
● Allows you to treat any SSH server to which 

you have access as a browser proxy server
– Hint: Hosting providers generally leave it on!



  

SOCKS5 proxy 2/4
local$ ssh -D8001 remote
remote$

● SOCKS5 proxy port is now listening on 
localhost port 8001



  

SOCKS5 proxy 3/4



  

SOCKS5 proxy 4/4
Web and DNS traffic now goes via the SSH 
server!
– Yes, including HTTPS
– Super handy when your designated VPN into a 

remote site breaks
(long story)



  

Questions?
● OpenSSH project site: https://www.openssh.com/ 
● Manual pages: https://www.openssh.com/manual.html 
● More about SSH keys:

https://sanctum.geek.nz/arabesque/gnu-linux-crypto-ssh-keys/
● More about ~/.ssh/config:

https://sanctum.geek.nz/arabesque/uses-for-ssh-config/
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