

OpenSSH Tricks

Tom Ryder
tom@sanctum.geek.nz

https://sanctum.geek.nz/

mailto:tom@sanctum.geek.nz
https://sanctum.geek.nz/

What is SSH?
● Short for Secure SHell
● Run commands on other computers:

– With encryption
– With authentication

● Successor to unencrypted tools like rlogin
– Designed as mostly-drop-in replacement

What is OpenSSH?
● OpenBSD’s implementation of both client and

server of the SSH protocol
● Free software (BSD license); also the default on

GNU/Linux
● Very popular, but not the only SSH

implementation

Typical SSH usage 1/2
● Run a user’s default shell on remote host with same

username:
local$ ssh remote

● Doesn’t have to be a shell; other commands work too:
local$ ssh -t remote top

● For interactive use, a shell is the most convenient
program.

Typical SSH usage 2/2
● Connect to a remote server with a different

username:
local$ ssh -l friend remote

● Connect to a remote server running on a
different port
 local$ ssh -p 2222 remote

Installing the OpenSSH server
● dpkg (Debian):

remote$ sudo apt install openssh-server
● rpm (Red Hat):

remote$ sudo yum install openssh-server

Generally works out of the box; some security
considerations with the defaults

Passwords are a pain
● Prompted for passwords on every connection:

local$ ssh remote
Password:

● This gets tiresome to type out every time.
● There are also some security issues with it...

– Especially if you turn StrictHostKeyChecking off, or ignore
the host key warnings...

(plz dont)

Public/private keys
● Generate an SSH key:

local$ ssh-keygen
– Lots of options, but the defaults are OK
– Decent strength RSA key (>= 2048 bits)
– Named user@local
– We are prompted for a passphrase...

Passphrase vs password
● The passphrase is used to encrypt the key, not

to authenticate to the remote server.
● The remote server doesn’t see the passphrase.

– This is already somewhat safer.

SSH agent 1/2
● Run an SSH agent for managing the key:

local$ eval "$(ssh-agent)"
Agent pid 2518

● Add your key:
local$ ssh-add
Enter passphrase for /home/ssh-demo/.ssh/id_rsa:
Identity added: /home/ssh-demo/.ssh/id_rsa

(/home/ssh-demo/.ssh/id_rsa)
● Check it’s ready:

local$ ssh-add -l
2048 SHA256:3v1Rf6ua3eTnjKQWbaSTWJJkXyK7dRgxAAVySGXuQKM

/home/ssh-demo/.ssh/id_rsa (RSA)

SSH agent 2/2
● Good to put into your ~/.profile or
~/.bash_profile

eval "$(ssh-agent)"

● Also check out Keychain:
https://www.funtoo.org/Keychain

https://www.funtoo.org/Keychain

Copy the key 1/2
● Easy way:

local$ ssh-copy-id remote
● Provide the password (for the last time!)
● Connections after that point will use the key from the

agent, without needing a password:
local$ ssh remote
remote$

Copy the key 2/2
● Under the hood, all ssh-copy-id does is:

1. Retrieve the public key loaded by ssh-agent

2. Add it to the end of remote:.ssh/authorized_keys
● That’s all!
● You can do this manually, but it’s a bit inconvenient

and error-prone (especially for long keys)

Go key-only
● Now we can turn off password authentication in
remote:/etc/ssh/sshd_config:
PasswordAuthentication no

● Now only keys will be accepted (careful!)
● You don’t have to worry about being brute-forced anymore
● Well, except for robots filling up your logs...

Hint: apt install fail2ban

Client config files 1/3
● Remembering or typing out connection details can be a pain:

local$ ssh remote1

local$ ssh -l friend remote2

local$ ssh -p 2222 remote3

local$ ssh remote4.ssh-servers.annoyingly-long-
domain-name.net.nz

Client config files 2/3
● Put the details in ~/.ssh/config instead:
Host remote1
Host remote2
User friend

Host remote3
 Port 2222
Host remote4
 HostName remote4.ssh-servers.annoyingly-long-
domain-name.net.nz

Client config files 3/3
● Ahh, much better!

local$ ssh remote1
local$ ssh remote2
local$ ssh remote3
local$ ssh remote4

● Way better than copy-pasting commands or searching
history...

Port forwarding 1/3
● Forward TCP traffic on a local port to a remote

port accessible to the SSH server.
...that is to say...

● Make a port on your computer act like a port on
the other end; masquerade as the remote host.

Port forwarding 2/3
● My MariaDB server only listens locally.
● I can’t just connect to it straight from the

internet (good!)
● But I want to connect to it from a GUI program

on my trusted computer...

Port forwarding 3/3
local$ ssh -L 3306:localhost:3306 remote
remote$

Then, in another terminal:

local$ mariadb
MariaDB>

SOCKS5 proxy 1/4
● Tom’s favourite trick!
● Pass all traffic for an application through the

SSH tunnel
● Allows you to treat any SSH server to which

you have access as a browser proxy server
– Hint: Hosting providers generally leave it on!

SOCKS5 proxy 2/4
local$ ssh -D8001 remote
remote$

● SOCKS5 proxy port is now listening on
localhost port 8001

SOCKS5 proxy 3/4

SOCKS5 proxy 4/4
Web and DNS traffic now goes via the SSH
server!
– Yes, including HTTPS
– Super handy when your designated VPN into a

remote site breaks
(long story)

Questions?
● OpenSSH project site: https://www.openssh.com/
● Manual pages: https://www.openssh.com/manual.html
● More about SSH keys:

https://sanctum.geek.nz/arabesque/gnu-linux-crypto-ssh-keys/
● More about ~/.ssh/config:

https://sanctum.geek.nz/arabesque/uses-for-ssh-config/

Email: tom@sanctum.geek.nz
Website: https://sanctum.geek.nz/
Social: @tejr@mastodon.sdf.org

https://www.openssh.com/
https://www.openssh.com/manual.html
https://sanctum.geek.nz/arabesque/gnu-linux-crypto-ssh-keys/
https://sanctum.geek.nz/arabesque/uses-for-ssh-config/
mailto:tom@sanctum.geek.nz
https://sanctum.geek.nz/
https://mastodon.sdf.org/@tejr

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25

