

Stacking LAMPs

Tom Ryder
tom@sanctum.geek.nz

https://sanctum.geek.nz/

mailto:tom@sanctum.geek.nz
https://sanctum.geek.nz/

What is the LAMP stack?

● A web service stack:
– Linux

– Apache HTTPD

– MySQL (or MariaDB)
– PHP

● Very mature
– In web years, anyway...the late 90s, even

– Making a web page change dynamically was a really big deal back then

● Very popular (especially for Content Management Systems)
– WordPress, Joomla!, Drupal, WooCommerce, SilverStripe, Magento,

October...

What are the pieces?

● Linux: The operating system and kernel at the bottom of the stack
● Apache HTTPD: The venerable Hypertext Text Transport Protocol

daemon: read and route requests, send the formed responses
● MySQL/MariaDB: The database server: store and retrieve

persistent data in tables
● PHP: Run programs using data in the requests with reference to

data in RAM/on disk, build responses to send to Apache HTTPD
– Sometimes people will try to tell you that the "P" can stand for Perl.

– It almost never actually does...not since the mid-90s, anyway.

– But if you run a LAMP(erl) stack, Tom would love to know about that.

– Python is a bit more common an alternative (Django, mostly).

Why LAMP?

● Three really big reasons that feed into each other:
– It's easy, so the amount of code written for it and documentation on it is

huge.

– It's everywhere, in operating system repositories and on third-party
webhosts, dirt cheap.

– It's mature, as people have people been using it since the late nineties.

● Note that none of those reasons have much to do with pure technical
virtues.

● If you're just beginning web programming, or if you're just a ruthless
pragmatist, even in 2018 LAMP is still a reasonable place to start.

● Bonus reason: WordPress. Love it or hate it, it's friggin everywhere,
and it runs on a LAMP stack.

Why not LAMP?

● You're a programming purist, and can't abide PHP.
– And, well, fair enough...

● You have very specific programming requirements.
– Maybe you need to do things with the JVM, or with .NET.

● You really do need to scale.
– LAMP scales only to a point. PHP's runtime is big, partly

because so much stuff is built into its core.

– Forking many times a second can be painful.

LAMP Example: Installation

● We'll install a LAMP stack suitable for use on a trusted LAN in a few lines,
on an internet-connected Debian GNU/Linux stable server.
– Virtual machine, headless, connected over SSH.

apt install apache2 libapache2-mod-php php7.0 php7.0-mysql
mariadb-server

● This is about as close to "it just works" as web programming gets.
● Versions:

– Apache HTTPD 2.4
– PHP 7.0

– MariaDB 10

● All from packages.
● We'll take a quick look around how it's structured.

LAMP Example: WordPress

● Installing the WordPress content management system by
unpacking a tarball.

● There's a package as well, but it makes running multiple sites
awkward.

MariaDB> create user 'wordpress'@'localhost'
identified by 'WXAK2ZWY26wC2yAN';

MariaDB> create database wordpress;

MariaDB> grant all on wordpress.* to
'wordpress'@'localhost';

LAMP Example: phpMyAdmin

● Installing the phpMyAdmin MariaDB
management system by installing another
package.

● Lock it down to only specified hosts...

Architecture: Apache (MPM)

● Prefork: Default. Keep a certain number of processes running. One
request per process.
– Still required for classic mod_php, due to lack of thread safety in some libraries

(and maybe even the core, depending on whom you ask)

– Definitely good enough for your home webserver

● Worker: Keep a certain number of processes running. Multiple requests
per process, using threads.
– Kinder on system resources and can serve more requests
– Breaks anything that wasn't designed with threads in mind

● There's event too, but that's essentially a more elegant worker, and
there's not much difference if all your connections in production are
HTTPS.
– ...all your connections in production are HTTPS, right?

Architecture: PHP

● CGI: Old school, Perlish way. Figure out the type of script file at
request time, and exec() the whole runtime for it.
– Sloooooooow, but hey, it worked in the 90s

● mod_php: What we've done. Each Apache HTTPD server thread
loads up the entire PHP runtime. All the server processes have PHP
resident, ready and waiting.
– Simple, quick, good for servers that run tons of PHP
– Big resident size for each process, though

● FastCGI: Best of both worlds. PHP spawns processes in the
background to wait for Apache to call on them.
– Recommended method if the server only runs your sites, and you're keen

for something a bit more advanced

Security: Server side

– Separate users for separate sites
● For mod_php, use apache_mpm_itk
● For FastCGI, it's probably built-in

– chroot to defeat elementary automated attacks?
● For mod_php, use mod_chroot (or reconsider entirely)
● For FastCGI, it's probably built-in
● This won't stop a determined attacker
● Might cause pain for dynamically loading libraries
● A trade-off ... !

Security: Client side

● A bit out of scope here, except:
– Deploy HTTPS for anything that has to go over an

untrusted network!
● Not a panacea, but given that it's free-as-in-beer now,

thanks to Let's Encrypt, we're running out of excuses
● Google cares, especially if your website has forms on it
● Especially if they're username and password forms
● SNI saved us, you don't need unique IPs anymore

Monitoring

● Nagios Icinga
● After all, some poor jerk needs to get woken up

at 3:00am when the whole thing crashes thanks
to some kiddie carder in Bulgaria who got a new
WordPress spl0it harrassing your customer's
beanie baby history website admin login page
with malformed Python urllib requests

● No, I'm not bitter

Questions?

Email: tom@sanctum.geek.nz

Web: https://sanctum.geek.nz/

Tom had a past life as a web developer, and now suffers for
his sins, by running webservers for his former brethren.

Any other sysadmin topics in which people would be
interested?

mailto:tom@sanctum.geek.nz
https://sanctum.geek.nz/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14

