Stacking LAMPs

Tom Ryder
tom@sanctum.geek.nz
https://sanctum.geek.nz/

mailto:tom@sanctum.geek.nz
https://sanctum.geek.nz/

What I1s the LAMP stack?

 Aweb service stack:
- Linux
- Apache HTTPD
- MySQL (or MariaDB)
- PHP
* Very mature
- In web years, anyway...the late 90s, even
- Making a web page change dynamically was a really big deal back then

* Very popular (especially for Content Management Systems)

- WordPress, Joomla!, Drupal, WooCommerce, SilverStripe, Magento,
October...

What are the pieces?

* Linux: The operating system and kernel at the bottom of the stack

 Apache HTTPD: The venerable Hypertext Text Transport Protocol
daemon: read and route requests, send the formed responses

« MySQL/MariaDB: The database server: store and retrieve
persistent data in tables

 PHP: Run programs using data in the requests with reference to
data in RAM/on disk, build responses to send to Apache HTTPD
- Sometimes people will try to tell you that the "P" can stand for Perl.
- It almost never actually does...not since the mid-90s, anyway.
- But if you run a LAMP(erl) stack, Tom would /ove to know about that.
- Python is a bit more common an alternative (Django, mostly).

Why LAMP?

Three really big reasons that feed into each other:

- It's easy, so the amount of code written for it and documentation on it is
huge.

- It's everywhere, in operating system repositories and on third-party
webhosts, dirt cheap.

- It's mature, as people have people been using it since the late nineties.

Note that none of those reasons have much to do with pure technical
virtues.

If you're just beginning web programming, or if you're just a ruthless
pragmatist, even in 2018 LAMP is still a reasonable place to start.

Bonus reason: WordPress. Love it or hate It, it's friggin everywhere,
and it runs on a LAMP stack.

Why not LAMP?

* You're a programming purist, and can't abide PHP.
- And, well, fair enough...

* You have very specific programming requirements.
- Maybe you need to do things with the JVM, or with .NET.

* You really do need to scale.

- LAMP scales only to a point. PHP's runtime is big, partly
because so much stuff is built into its core.

- Forking many times a second can be painful.

LAMP Example: Installation

 We'll install a LAMP stack suitable for use on a trusted LAN in a few lines,
on an internet-connected Debian GNU/Linux stable server.

- Virtual machine, headless, connected over SSH.
apt install apache2 libapache2-mod-php php7.0 php7.0-mysql
mariadb-server

* This is about as close to "it just works" as web programming gets.

* Versions:
- Apache HTTPD 2.4
- PHP 7.0
- MariaDB 10

 All from packages.
« We'll take a quick look around how it's structured.

LAMP Example: WordPress

* Installing the WordPress content management system by
unpacking a tarball.

* There's a package as well, but it makes running multiple sites
awkward.

MariaDB> create user 'wordpress'@'localhost’
identified by 'WXAK2ZWY26wC2yAN';

MariaDB> create database wordpress;

MariaDB> grant all on wordpress.* to
'wordpress'@'localhost’;

LAMP Example: phpMyAdmin

* |nstalling the phpMyAdmin MariaDB
management system by installing another
package.

* Lock it down to only specified hosts...

Architecture: Apache (MPM)

* Prefork: Default. Keep a certain number of processes running. One
request per process.

— Still required for classic mod_php, due to lack of thread safety in some libraries
(and maybe even the core, depending on whom you ask)

- Definitely good enough for your home webserver
 Worker: Keep a certain number of processes running. Multiple requests
per process, using threads.
- Kinder on system resources and can serve more requests
- Breaks anything that wasn't designed with threads in mind
* There's event too, but that's essentially a more elegant worker, and

there's not much difference if all your connections in production are
HTTPS.

- ...all your connections in production are HTTPS, right?

Architecture: PHP

e CGI: Old school, Perlish way. Figure out the type of script file at
request time, and exec () the whole runtime for it.

- Sloooooooow, but hey, it worked in the 90s
 mod_php: What we've done. Each Apache HTTPD server thread

loads up the entire PHP runtime. All the server processes have PHP
resident, ready and waiting.

- Simple, quick, good for servers that run tons of PHP
- Big resident size for each process, though

» FastCGil: Best of both worlds. PHP spawns processes in the
background to walit for Apache to call on them.

- Recommended method if the server only runs your sites, and you're keen
for something a bit more advanced

Security: Server side

- Separate users for separate sites
 For mod_php, use apache_mpm_.itk
* For FastCGl, it's probably built-in
- chroot to defeat elementary automated attacks?
 For mod_php, use mod_chroot (or reconsider entirely)
For FastCGil, it's probably built-in
This won't stop a determined attacker
Might cause pain for dynamically loading libraries
A trade-off ... !

Security: Client side

* A bit out of scope here, except:

- Deploy HTTPS for anything that has to go over an
untrusted network!

 Not a panacea, but given that it's free-as-in-beer now,
thanks to Let's Encrypt, we're running out of excuses

* Google cares, especially if your website has forms on it
« Especially if they're username and password forms
 SNI saved us, you don't need unigue IPs anymore

Monitoring

* Nagios Icinga

» After all, some poor jerk needs to get woken up
at 3:00am when the whole thing crashes thanks
to some kiddie carder in Bulgaria who got a new
WordPress splOit harrassing your customer's
beanie baby history website admin login page
with malformed Python urllib requests

 NO, I'm not bitter

Questions?

Emall: tom@sanctum.geek.nz
Web: https://sanctum.geek.nz/

Tom had a past life as a web developer, and now suffers for
his sins, by running webservers for his former brethren.

Any other sysadmin topics in which people would be
Interested?

mailto:tom@sanctum.geek.nz
https://sanctum.geek.nz/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14

